In this chapter, we will examine the 'Enneagram Pattern', which as has been explained previously, is simply the $142857 . .$. 'Repetition Pattern' which is contained within the 'Infinitely Repeating Decimal Number' quotient which is yielded by the Function of "1/7". This parent chapter will be a relatively short chapter, which is due to the fact that the 'Infinitely Repeating Decimal Number' quotients which are yielded by the Division of the 'Base Numbers' by the 7 all display 'Shifted Matching' between one another (in that " $1 / 7=.142857 \ldots$..." " $2 / 7=.285714 \ldots$..., " $3 / 7=.428571 \ldots$..., etc.), which means that we only need to examine the 'Repetition Pattern' which is contained within the 'Infinitely Repeating Decimal Number' quotient which is yielded by the Function of " $1 / 7$ " (this being the 'Enneagram Pattern'). In the first section of this chapter, we will examine the various 'Progressive Patterns' which are contained within the 'Enneagram Pattern'. Then, in the second section of this chapter, we will perform the ' $(+/-)$ Sibling Functions' on the various pairs of Numbers which are contained within the 'Enneagram Pattern', with these Functions yielding a variety of patterns which are similar to those which were seen in "Interlude Three".

We will start with the Function of " $1 / 7$ ", which yields the 'Infinitely Repeating Decimal Number' quotient which is shown below (through one complete iteration of its 'Repetition Pattern').

$$
1 / 7=.142857 \ldots
$$

The 142857 ... 'Repetition Pattern' which is seen above Adds to a non-condensed sum of 27, with this non-condensed sum condensing to the 9 . This condensed 9 is our first indication that the 'Enneagram Pattern' shares a Connection with the '3,6,9 Family Group'. (This Connection is an extension of the previously established 'Connection Between The 7 And The 3,6,9 Family Group', which is due to the fact that the 'Enneagram Pattern' is yielded by Dividing by the 7.)

The 'Connection Between The 7 And The 3,6,9 Family Group' is also displayed by the 'One-Step Progressive Pattern' which is contained within the 'Enneagram Pattern', as is shown below. (Throughout this chapter, the 'Progressive Patterns' will all be highlighted in the standard color code, which means that the 'Positive Shocks' will all be highlighted in green, the 'Negative Shocks' will all be highlighted in red, and the non-Shocked Numbers will all be highlighted in blue.)

366633
142857(1)...
Above, we can see that this 'One-Step $+3,+6,+6,+6,+3,+3$ Progressive Pattern' maintains, with the inclusion of one of each kind of Shock, with these two Shocks maintaining 'Shock Parity', and involving a "+,-,..." 'Shock Pattern'. (These 'Progressive Patterns' will all display 'Shock Parity' (individually), while their 'Shock Patterns' will display a form of Mirroring between one another, all of which will be tracked as we progress.) While one Cycle of these values of change Adds to a noncondensed sum of 27 , in that " $3+6+6+6+3+3=27$ ". This non-condensed sum of 27 condenses to the 9 , as will be the case in relation to all of the non-condensed sums which are yielded by the Cycles of the values of change of these 'Progressive Patterns'. (These condensed sums of 9 are another example of the 'Connection Between The 7 And The 3,6,9 Family Group'.)

The values of change of the 'One-Step Progressive Pattern' which is seen above are all members of the '3,6,9 Family Group'. This Family Group exclusivity indicates that the values of change of the six 'Progressive Patterns' which are contained in the first Cycle of the 'Progressive Pattern Set' of the 'Enneagram Pattern' collectively display a sub-pattern which involves a form of 'Family Group Mirroring'. This Family Group Mirrored sub-pattern is continued with the values of change of the 'TwoStep Progressive Pattern' which is contained within this same 'Repetition Pattern', which is shown below.

144
142857(1)...
Above, we can see that the 'Enneagram Pattern' contains a 'Two-Step $+1,+4,+4$ Progressive Pattern', with these three values of the changes involving the first two members of the '1,4,7 Family Group' (with the second member occurring twice). These '1,4,7 Family Group' members maintain the 'Family Group Mirrored' sub-pattern which is displayed by the values of change of these six 'Progressive Patterns' (which will be examined towards the end of this section). Also, as was the case in relation to the 'One-Step Progressive Pattern', this 'Two-Step Progressive Pattern' maintains 'Shock Parity'. Though this 'Two-Step Progressive Pattern' involves a "-,,+,.." 'Shock Pattern', with this 'Shock Pattern' displaying Mirroring in relation to that of the 'One-Step Progressive Pattern' (which is "+,-,..."). (The sub-pattern which is displayed collectively by the 'Shock Patterns' of these six 'Progressive Patterns' will be examined towards the end of this section.) While one Cycle of these values of change Adds to a non-condensed sum of 9 (in that " $1+4+4=9$ "), which maintains the condensed 9 sub-pattern which is displayed by the Cycles of the values of change of these 'Progressive Patterns'.

Next, we will examine the 'Three-Step Progressive Pattern' which is contained within this same 'Repetition Pattern', with this 'Progressive Pattern' maintaining all of the previously established subpatterns, while also displaying the familiar characteristic of not requiring any Shocks, as is shown below. (To clarify, the characteristic which involves the 'Progressive Patterns' which are 'Multiples Of The 3' not involving any Shocks is a familiar characteristic which has been seen in previous chapters.)

$$
\begin{gathered}
7 \quad 2 \\
142857(1) \ldots
\end{gathered}
$$

Above, we can see that the 'Enneagram Pattern' contains a 'Three-Step $+7,+2$ Progressive Pattern', with these two values of change involving the third member of the '1,4,7 Family Group' and the first member of the '2,5,8 Family Group'. These two values of change maintain the 'Family Group Mirrored' sub-pattern which is displayed by the values of change of these six 'Progressive Patterns', as well as the condensed 9 sub-pattern which is displayed by the Cycles of the values of change of these 'Progressive Patterns' (in that " $7+2=9$ "). Also, we can see that this 'Progressive Pattern' does not require any Shocks, with this lack of Shocks technically maintaining the sub-pattern which is displayed by the 'Shock Patterns' of these six 'Progressive Patterns', as well as that which involves all of these 'Progressive Patterns' maintaining 'Shock Parity'.)

Next, we will examine the 'Four-Step Progressive Pattern' which is contained within this same 'Repetition Pattern', with this 'Progressive Pattern' maintaining all of the previously established subpatterns, as is shown below.

$$
\begin{array}{ccc}
5 & 5 & 8 \\
142857142857(1) \ldots
\end{array}
$$

Above, we can see that the 'Enneagram Pattern' contains a 'Four-Step $+5,+5,+8$ Progressive Pattern', with these three values of change involving the second and third members of the '2,5,8 Family Group'. (In this case, the second member of the '2,5,8 Family Group' occurs twice, as was the case in relation to the values of change of the 'Two-Step Progressive Pattern', all of which involved '1,4,7 Family Group' members.) These values of change maintain the 'Family Group Mirrored' sub-pattern which is displayed by the values of change of these six 'Progressive Patterns', as well as the condensed 9 subpattern which is displayed by the Cycles of the values of change of these 'Progressive Patterns' (in that $" 5+5+8=18(9)$ "). Also, as has been the case in relation to all of the previous 'Progressive Patterns', this 'Progressive Pattern' maintains 'Shock Parity', which in this case is maintained through one of each kind of Shock. While this 'Four-Step Progressive Pattern' involves a "-,+,..." 'Shock Pattern', with this 'Shock Pattern' maintaining the sub-pattern which is displayed by the 'Shock Patterns' of these six 'Progressive Patterns'.

Next, we will examine the 'Five-Step Progressive Pattern' which is contained within this same 'Repetition Pattern', with this 'Progressive Pattern' maintaining all of the previously established subpatterns, as is shown below.

6	6	3	3	3
$142857142857142857142857142857(1) \ldots$				

Above, we can see that the 'Enneagram Pattern' contains a 'Five-Step $+6,+6,+3,+3,+3,+6$ Progressive Pattern', with these six values of change involving exclusively '3,6,9 Family Group' members. These values of change of 6, 6, 3, 3, 3, and 6 display 'Shifted Matching' in relation to those of the 'One-Step Progressive Pattern' (which are $3,6,6,6,3$, and 3), and maintain the 'Family Group Mirrored' subpattern which is displayed by the values of change of these six 'Progressive Patterns'. Also, as has been the case in relation to all of the previous 'Progressive Patterns', this 'Progressive Pattern' maintains 'Shock Parity', which in this case is maintained through one of each kind of Shock. While this 'FiveStep Progressive Pattern' involves a "+,-,.." 'Shock Pattern', with this 'Shock Pattern' maintaining the sub-pattern which is displayed by the 'Shock Patterns' of these six 'Progressive Patterns'. Also, these six values of change maintain the condensed 9 sub-pattern which is displayed by the Cycles of the values of change of these 'Progressive Patterns', in that " $6+6+3+3+3+6=27(9)$ ".

Next, we will examine the 'Six-Step Progressive Pattern' which is contained within this same 'Repetition Pattern', with this 'Progressive Pattern' maintaining all of the previously established subpatterns, as is shown below.

9
142857(1)...
Above, we can see that the 'Six-Step Progressive Pattern' which is contained within the 'Enneagram Pattern' is the 'No Change Progressive Pattern' which acts as the separation between the Cycles of this 'Progressive Pattern Set'. This 'Six-Step +/-9/0 Progressive Pattern' involves a lone value of change which maintains the 'Family Group Mirrored' sub-pattern which is displayed by the values of change of these six 'Progressive Patterns (which will be examined in a moment)'. (This lone value of change also technically maintains the condensed 9 sub-pattern which is displayed by the Cycles of the values of change of these 'Progressive Patterns'.) Also, we can see that this 'Progressive Pattern' does not require any Shocks, with this lack of Shocks technically maintaining the sub-pattern which is displayed by the 'Shock Patterns' of these six 'Progressive Patterns' (which will be examined in a moment), as well as that which involves all of these 'Progressive Patterns' maintaining 'Shock Parity'.

The lone value of change of the 'Six-Step Progressive Pattern' which is seen above completes the 'Family Group Mirrored' sub-pattern which is displayed by the values of change of the six 'Progressive Patterns' which are contained in the first Cycle of this 'Progressive Pattern Set'. This sub-pattern is shown below, highlighted in a Family Group color code.
3,6,6,6,3,3,1,4,4,7,2,5,5,8,6,6,3,3,3,6,9

Above, we see the complete 'Family Group Mirrored' sub-pattern which is displayed by the values of change of these six 'Progressive Patterns', with its constituent Numbers all highlighted in their respective Family Group colors (with the exception of the 9, with this non-highlighted Number acting as the separation between the Cycles of this Infinitely repeating sub-pattern). This sub-pattern involves one instance each of the $1,4,7$ and $2,5,8$ Family Groups (each of which involves an instance of a dual center Number), with these two complete Family Groups oriented towards the center of the overall subpattern. These two complete Family Groups are surrounded by a variety of '3,6,9 Family Group' members, all of which display concentric 'Sibling/Cousin Mirroring' between one another (individually), as is highlighted arbitrarily here: $3,6,6,6,3,3, \ldots . . ., 6,6,3,3,3,6$. (While the non-'3,6,9 Family Group' members which are involved in this sub-pattern display a similar form of 'Sibling Mirroring' between one another (individually), as is highlighted arbitrarily here: ..., , , 4, 4, 7,2,5,5,8,... .)

Next, we will examine the sub-pattern which is displayed by the 'Shock Patterns' which are involved in the six 'Progressive Patterns' which are contained in the first Cycle of this 'Progressive Pattern Set'. A chart which involves these six 'Shock Patterns', listed one beneath the other, is shown below. (In this chart, the 'Shock Pattern' of the 'Six-Step Progressive Pattern' is shown separately, as this 'Shock Pattern' acts as the separation between the Cycles of this sub-pattern.)

> 'One-Step Progressive Pattern' -,,$+- \ldots$
> 'Two-Step Progressive Pattern' - -,,$+ \ldots$
> 'Three-Step Progressive Pattern' - no Shocks
> 'Four-Step Progressive Pattern' - -,,+,...
> 'Five-Step Progressive Pattern' -,,$+- \ldots$
> 'Six-Step Progressive Pattern' - no Shocks

Above, we can see that these 'Shock Patterns' display a palindromic form of Mirroring between one another (collectively), as is highlighted arbitrarily here: " $+,-, \ldots,-,+, \ldots$, no Shocks, $-,+, \ldots,+,-, \ldots$ ".

```
**********
```

Next, we will examine the various three-digit condensive patterns which are yielded when the '(+/-) Sibling Functions' are performed on the various pairs of Numbers which are contained within the 'Enneagram Pattern', all of which are shown and explained below.

First, there is the complete '3,6,9 Family Group' which can be yielded by Adding together three of the pairs of Numbers which are contained within the 'Enneagram Pattern', which is shown below. (This Adding or Subtracting of pairs of Numbers within a pattern is a familiar concept which was first seen in "Interlude Three", and which will be seen again in "Chapter 7.1: 'Decimal Patterns of the 7' ".)

```
9
/ \
142857..
    V V
    6 12(3)
```

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 8 Add to the 9 . While on the bottom of the 'Enneagram Pattern', we can see that the 4 and the 2 Add to the 6, and the 5 and the 7 Add to the condensed 3, with these two condensed values completing the condensed '3,6,9 Family Group'. (Throughout this section, the condensed '3,6,9 Family Group' members will all be highlighted in blue, as is the case in the example which is seen above.)

The condensed '3,6,9 Family Group' which is seen above is the only complete Family Group which can be yielded from the 'Enneagram Pattern' in this manner, with this characteristic again indicating the 'Connection Between The 7 And The 3,6,9 Family Group'.

Next, we will examine the '3,6,9 Family Group' variant patterns which can be yielded from the 'Enneagram Pattern' (by performing the '(+/-) Sibling Functions' on various pairs of Numbers), one of which is shown below.

$$
\begin{aligned}
& 3612(3) \\
& \wedge \wedge \Lambda \\
& 142857 \ldots
\end{aligned}
$$

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 4 Subtract to yield the 3, the 2 and the 8 Subtract to yield the 6 , and the 5 and the 7 Add to the condensed 3, with these three condensed values comprising the '3,6,9 Family Group' variant pattern of 3,6,3. (Throughout this chapter, the Subtraction Functions' will be performed in whichever direction yields a 'Positive Base Charged' difference, as has been the case (for the most part) throughout previous chapters.)

Next, we will examine another of the '3,6,9 Family Group' variant patterns which can be yielded from the 'Enneagram Pattern', which is shown below.

$$
\begin{gathered}
3 \quad 3 \\
\wedge / \backslash \\
142857 \ldots \\
\backslash / \\
15(6)
\end{gathered}
$$

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 4 Subtract to yield the 3, as do the 2 and the 5 . While on the bottom of the 'Enneagram Pattern', we can see that the 5 and the 7 Add to the condensed 6 , with this condensed value completing the '3,6,9 Family Group' variant pattern of 3,3,6.

Next, we will examine the third of the '3,6,9 Family Group' variant patterns which can be yielded from the 'Enneagram Pattern', which is shown below.

```
    9
    9/\
/ \ \
142857...
\ /
9
```

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 8 Add to the 9 , as do the 2 and the 7. While on the bottom of the 'Enneagram Pattern', we can see that the 4 and the 5 Add to another 9 , with this condensed value completing the '3,6,9 Family Group' variant pattern of 9,9,9. (This particular '3,6,9 Family Group' variant pattern can also be considered to be a 'Self-Sibling/Cousin 9' pattern.)

Next (getting off of the '3,6,9 Family Group'), we will examine the other Matching Number pattern which can be yielded from the 'Enneagram Pattern', which is shown below (with this Matching Number pattern highlighted arbitrarily in green).

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 2 Subtract to yield the 1, as do the 8 and the 7 . While on the bottom of the 'Enneagram Pattern', we can see that the 4 and the 5 Subtract to yield another 1 , with this condensed value completing the Matching Number pattern of 1,1,1.

Next, we will examine the Sibling variant patterns which can be yielded from the 'Enneagram Pattern', all of which are shown and explained below, starting with a ' $1 / 8$ Sibling/Self-Cousin' variant pattern. (These Sibling variant patterns are in addition to the pair of '3/6 Sibling/Cousin' variant patterns which were examined earlier as '3,6,9 Family Group' variant patterns.)

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 7 Add to the 8, and the 2 and the 8 Add to the condensed 1 . While on the bottom of the 'Enneagram Pattern', we can see that the 4 and the 5 Subtract to yield another 1, with this condensed value completing the '1/8 Sibling/SelfCousin' variant pattern of $8,1,1$. (Throughout the remaining examples, the Lesser of the condensed Siblings will be highlighted arbitrarily in green, and the Greater of the condensed Siblings will be highlighted arbitrarily in red, as is the case in relation to the example which is seen above.)

Next, we will examine the '2/7 Sibling' variant pattern which can be yielded from the 'Enneagram Pattern', which is shown below.

Above, on the top of the 'Enneagram Pattern', we can see that the 4 and the 2 Subtract to yield the 2, as do the 5 and the 7. While on the bottom of the 'Enneagram Pattern', we can see that the 1 and the 8 Subtract to yield the 7 , with this condensed value completing the ' $2 / 7$ Sibling' variant pattern of $7,2,2$.

Next, we will examine the ' $4 / 5$ Sibling' variant pattern which can be yielded from the 'Enneagram Pattern', which is shown below.

Above, on the top of the 'Enneagram Pattern', we can see that the 1 and the 4 Add to the 5, and the 8 and the 5 Add to the condensed 4. While on the bottom of the 'Enneagram Pattern', we can see that the 2 and the 7 Subtract to yield another 5, with this condensed value completing the ' $4 / 5$ Sibling' variant pattern of 5,5,4.

The three Sibling variant patterns which are seen above display forms of Mirroring and Matching between one another, as is shown below, with the groups of three condensed solutions which comprise each of the Sibling variant patterns listed one beneath the other, and with the Lesser of the Siblings highlighted arbitrarily in green and the Greater of the Siblings highlighted arbitrarily in red.

811
722
554

Above, we can see that the first two of these horizontal patterns display behavioral Matching between one another, in that they both involve a repetition of the Lesser of the Siblings (these being the 1 and the 2 , respectively). While the third pattern displays behavioral Mirroring in relation to the first two patterns, in that it involves a repetition of the Greater of the Siblings (this being the 5). Also, these three patterns display an overall form of orientational Matching between one another, in that they all begin with the Greater of the Siblings.

Though all of these forms of Mirroring and Matching are incomplete, as we have yet to include the two '3/6 Sibling/Cousin' variant patterns which were examined earlier in this section (as '3,6,9 Family Group' variant patterns). Below, these two '3/6 Sibling/Cousin' variant patterns are included in the list
of variant patterns, with the most ideal of the ' $3 / 6$ Sibling/Cousin' variant patterns included in the leftmost of the two lists.

811	811
722	722
336	363
554	554

Above, we can see that the first of the ' $3 / 6$ Sibling/Cousin' variant patterns (that which is included in the leftmost of the two lists) displays behavioral Matching in relation to the first two patterns, in that it contains two of its Lesser Sibling, and orientational Matching in relation to the fourth of these patterns, in that its dual Numbers are oriented to the left of the pattern. (Though this pattern is the only one of these four patterns to have its Lesser Siblings oriented to the left.) While the '3/6 Sibling/Cousin' variant pattern which is contained in the rightmost example displays a Weaker form of overall Mirroring in relation to the other patterns, in that its dual Siblings are oriented to either side of its single Sibling.

That brings this section, and therefore this relatively short chapter to a close. Though there is still much more to be said about the '/7 Division Function', as will be seen in the various sub-chapters of this parent chapter, all of which are listed below.

First, there is "Chapter 7.1: 'Decimal Patterns of the 7 ' ", which involves an examination of the various condensive patterns which can be yielded from the "Decimal Patterns" which are yielded by the 'Repetition Patterns' which are contained within the 'Infinitely Repeating Decimal Number' quotients which are yielded by the Division of each of the members of the 'Base Set' by the 7 (individually). (The concept of 'Decimal Patterns' will be explained in the first of these sub-chapters.) Next is "Chapter 7.4: 'The Decimal Pattern Set Of The 7' ", which is a continuation of the first sub-chapter, and involves an examination of these same 'Decimal Patterns', only this time as a complete 'Decimal Pattern Set'. Then, there is "Chapter 7^{2} : 'Squaring the Enneagram' ", which is a stand-alone chapter which involves the ' E^{2} Pattern', with this being the long, complex pattern which is yielded by the Function(s) of "1/7/7" (or the Function of " $1 / 49$ ").

